The Lowest Eigenvalue of Jacobi Random Matrix Ensembles and Painlevé Vi
نویسنده
چکیده
We present two complementary methods, each applicable in a different range, to evaluate the distribution of the lowest eigenvalue of random matrices in a Jacobi ensemble. The first method solves an associated Painlevé VI nonlinear differential equation numerically, with suitable initial conditions that we determine. The second method proceeds via constructing the power-series expansion of the Painlevé VI function. Our results are applied in a forthcoming paper in which we model the distribution of the first zero above the central point of elliptic curve L-function families of finite conductor and of conjecturally orthogonal symmetry.
منابع مشابه
Multivariate Analysis and Jacobi Ensembles: Largest Eigenvalue, Tracy-widom Limits and Rates of Convergence.
Let A and B be independent, central Wishart matrices in p variables with common covariance and having m and n degrees of freedom, respectively. The distribution of the largest eigenvalue of (A + B)(-1)B has numerous applications in multivariate statistics, but is difficult to calculate exactly. Suppose that m and n grow in proportion to p. We show that after centering and, scaling, the distribu...
متن کاملRandom block matrices generalizing the classical ensembles
In this paper we consider random block matrices which generalize the classical Laguerre ensemble and the Jacobi ensemble. We show that the random eigenvalues of the matrices can be uniformly approximated by the roots of matrix orthogonal polynomials and obtain a rate for the maximum difference between the eigenvalues and the roots. This relation between the random block matrices and matrix orth...
متن کاملExact calculation of the distribution of every second eigenvalue in classical random matrix ensembles with orthogonal symmetry
The explicit quaternion determinant formula for the n-point distribution of the even numbered eigenvalues (ordered so that x1 < x2 < · · ·) in the classical random matrix ensembles with orthogonal symmetry is computed. For an odd number of eigenvalues N +1 it is found to coincide with the n-point distribution for the eigenvalues in the corresponding ensemble with symplectic symmetry and N/2 eig...
متن کاملRandom Matrix Theory and the Sixth
A feature of certain ensembles of random matrices is that the corresponding measure is invariant under conjugation by unitary matrices. Study of such ensembles realised by matrices with Gaussian entries leads to statistical quantities related to the eigenspectrum, such as the distribution of the largest eigenvalue, which can be expressed as multidimensional integrals or equivalently as determin...
متن کاملMulti-critical unitary random matrix ensembles and the general Painlevé II equation
We study unitary random matrix ensembles of the form Z−1 n,N | detM | 2αe−N TrV dM, where α > −1/2 and V is such that the limiting mean eigenvalue density for n,N → ∞ and n/N → 1 vanishes quadratically at the origin. In order to compute the double scaling limits of the eigenvalue correlation kernel near the origin, we use the Deift/Zhou steepest descent method applied to the Riemann-Hilbert pro...
متن کامل